MassDEP Field Assessment and Support Team (FAST)

Framingham – General Chemical Facility

August 6, 2012

Air Monitoring During Initial Scarification Operations

Background

On August 6, 2012, the MassDEP FAST Mobile Laboratory was deployed to the General Chemical facility on Leland Street in Framingham, to monitor air quality during the initiation of scarification operations in Building No, 1. The laboratory arrived at the site at about 10:45 AM, and departed at the cessation of cleanup activities for the day, at about 6:15 PM.

While scarification of the concrete floor was occurring in Building No. 1, power-washing activities were being implemented in various areas to the east. A tent was initially used to contain the spray from the power washing operations near the fence-line; later in the afternoon, work done in more central ("Loading Rack") areas was not done under a tent.

A tiered air monitoring program was instituted by MassDEP to evaluate remedial air emissions:

- MassDEP personnel would periodically survey property locations with a hand-held photoionization detector (PID), to determine concentrations of Volatile Organic Compounds (VOCs).
- Four stationary AreaRAE monitors were positioned around the facility, designated as DEP-1, DEP-2, DEP-3, and DEP-4 on Figure 1. Each of these units was equipped with a 10.6 eV photoionization detector (PID), which continuously transmitted data every 2 seconds to a receiving unit located in the mobile laboratory. Each AreaRAE monitor was programmed to alarm if a value of 0.1 ppmV was exceeded (the lowest setting for these units).
- A Thermo/MIE pDR-1500 monitor was set up on the southeasterly (downwind) area of the site, to provide real-time measurements of dust and aerosol concentrations in the ambient air.
- Over the course of the day, air samples were obtained in 1 liter bags at 8 different locations on the property, based upon cleaning activities, wind direction, PID readings, or odor conditions. Each of these samples was promptly analyzed on a HAPSITE Gas Chromatograph with a Mass Spectrometer (GC/MS) in the mobile laboratory.

In addition to activities by MassDEP, personnel from Prime Engineering were monitoring air emissions with 3 dust monitors and two PID meters. Air sampling canisters were also positioned at the upwind and downwind fence-lines to obtain time-weighted samples for analysis by EPA Method TO-15.

Weather Conditions

It was a warm and sunny day, with temperatures above 80° F. Regional winds were 5-10 MPH from the west throughout the day. Data from the 10-meter high weather station on the mobile laboratory recorded wind speeds of 4-8 MPH, with winds from the west/northwest. Given the presence of a variety of structures and canopies at the facility, however, localized and transient near-ground-surface eddies may have further influenced air flow and contaminant transport patterns.

Figure 1 - Location of MassDEP AreaRAEs and Air Samples

Results

Time-weighted-average readings (60 seconds) on the downwind dust and aerosol monitor were 0 μ g/m³ throughout the day. Volatile Organic Compound (VOC) data from the PID sensor on the four AreaRAE units are presented in Figure 2. GC/MS data from the 8 discrete air samples are presented in Table 1.

Discussion

As can be seen in Figure 2, there were initial low-level positive PID responses (0.1 ppmV) on AreaRAE DEP-1. At the time of these readings, DEP-1 was temporarily positioned on the northeasterly fence-line, near the ultimate location of DEP-3 (see Figure 1). After a hand held MSA PID meter verified these low level detections, a 1 liter air sample (# 002) was obtained and promptly analyzed on the HAPSITE GC/MS. As shown in Table 1, this sample contained low levels (< 2 ppbV) of Tetrachloroethylene, Styrene, and Toluene, below fence-line action levels.

DEP-1 was subsequently moved to an upwind position, and DEP-3 was placed in this northeasterly area of the site. All subsequent readings for DEP-1, and all readings for the other AreaRAE units, were 0 ppmV throughout the work day.

As can be seem in Table 1, only low or trace concentrations of VOCs were detected in the 1 Liter air samples obtained at the site. Unlike earlier efforts, there were no significant chromatographic peaks indicating the presence of non-target analytes (e.g., Cyclohexane).

Individual data reports are appended to this report.

Summary and Conclusions

A multi-tiered air monitoring program was conducted by MassDEP personnel over the course of invasive cleaning activities at the site, during a time period when scarification activities were being initiated in Building No. 1, and power washing was occurring in other areas of the site.

There were not significant levels of VOCs or dust noted at the site during these activities.

	001	002	003	004	005	007	008	009	
Analyte ²	11:20 AM	12:10 PM	12:35 PM	1:02 PM	1:45 PM	2:50 PM	3:30 PM	4:10 PM	RL ³
Allalyte	SE Side of Facility	Near AreaRAE 3	Near AreaRAE 4	Outside Bldg No, 1	Near AR-3 and Tent	50 ft east of tank farm	SE corner of site	Loading Rack area	IXE
Vinyl Chloride	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	5
Chloroethane ⁴	N.D.	N.D.	N.D.	N.D.	N.D.	3.9	N.D.	N.D.	5
Trichloromonofluoromethane	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	30
1,1-Dichloroethene	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	1
Methylene Chloride	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	1
1,1,2-Trichlorotrifluoroethane	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	1
Cis 1,2-Dichloroethylene	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	1
Chloroform	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	1
1,2-Dichloroethane	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	5
1,1,1-Trichloroethane	N.D.	N.D.	N.D.	N.D.	N.D.	0.2	N.D.	N.D.	1
Benzene	N.D.	N.D.	N.D.	0.3.	N.D.	N.D.	N.D.	N.D.	1
Carbon Tetrachloride	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	1
Trichloroethylene	N.D.	N.D.	N.D.	N.D.	N.D.	0.6	N.D.	N.D.	1
1,1,2-Trichloroethane	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	1
Toluene	0.6	0.9	0.5	0.5	0.5	0.3	0.3	0.7	1
Tetrachloroethylene	0.4	1.9	0.4	N.D.	N.D.	0.6	N.D.	N.D.	1
Chlorobenzene	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	1
Ethylbenzene	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	1
p/m-Xylene	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	1
Styrene	9.9	1.6	2.0	0.5	0.8	1.1	1.0	0.8	1
o-Xylene	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	1
1,2-Dichlorobenzene (ortho)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	5
1,2,4-Trichlorobenzene	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	5
HexachloroButadiene	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	5
Cyclohexane ⁵									NA
Hexane ⁵									NA
2-Methylheptane ⁵									NA

Table 1 - Footnotes

- ¹N.D. = Not Detected; italicized values are estimated concentrations less than the Reporting Limit ²Purple Shaded rows are chemicals that were reportedly formerly stored at the facility
- ³RL = Analytical Reporting Limit (i.e., the minimum concentration that a contaminant can be reliably *quantified* lower levels can be *detected*, but their concentrations can only be estimated)
- ⁴Chloroethane is often found in air sampling bags analyzed by the HAPSITE GC/MS, and is thought to be a sampling bag or system contaminant, and therefore not present or present at lower levels
- ⁵Orange shaded rows are chemicals that are not method analytes, but are tentatively identified by their mass spectra, and roughly quantified based upon the response of an internal standard
- ⁶NA = Not Applicable

MassDEP Fie	ld Assessmen	t and Sup	port Team	ı (FAST)	AIR S	CREENING	DATA	RTN:	3-19174
City or Town:	Framingham		Address:	133 Lelai	nd Street				Location:
Date Sampled:	8/6/12	Time:	11:20 AM	Field ID:	SE site	Collector:	Fitzgerald	i	
Date Analyzed:	8/6/12	Time:	11:40 AM	Lab ID:	001	Analyst:	Fitzgerald	i	
Method Analy	tos	Conce	ntration	Reporti	ng Limit	Peak Fit	Peak		Cunonum
Method Analy	tes	ppbV	μg/m ³	ppbV	μg/m ³	Peak Fit	Purity	`	Synonym
Vinyl Chloride		N.D.	N.D.	5	13	0.719	0.024	Chloroe	thene
Bromomethane		N.D.	N.D.	5	22	0.955	0.014	Methyl	Bromide
Chloroethane		N.D.	N.D.	5	23	0.992	0.041	Ethyl C	hloride
Trichloromonofl	uoromethane	N.D.	N.D.	30	210	0.785	0.034	Freon 1	1
1,1-Dichloroeth	ene	N.D.	N.D.	1	4	0	0	Vinylide	ne Chloride
Methylene Chlo	oride	N.D.	N.D.	1	3.5	0	0	Dichloro	methane
1,1,2-Trichlorot	rifluoroethane	N.D.	N.D.	1	7.7	0.863	0.035	Freon 1	13
1,1-Dichloroeth	ane	N.D.	N.D.	1	4.1	0	0		
Cis 1,2-Dichlor	oethylene	N.D.	N.D.	1	4	0.886	0.042	cis-1,2-	Dichloroethene
Chloroform		N.D.	N.D.	1	4.9	0.927	0.049	Trichlor	omethane
1,2-Dichloroeth	ane	N.D.	N.D.	5	20	0.963	0.012	Ethylen	e Dichloride
1,1,1-Trichloroe	thane	N.D.	N.D.	1	5.5	0.886	0.042	Methyl	Chloroform
Benzene		N.D.	N.D.	1	3.2	0.946	0.09		
Carbon Tetrach	loride	N.D.	N.D.	1	6.3	0.851	0.011	Tetrach	loromethane
1,2-Dichloropro	pane	N.D.	N.D.	1	4.6	0.508	0.107	Propyle	ne Dichloride
Trichloroethyler	ne	N.D.	N.D.	1	5.4	0.989	0.238	Trichlor	oethene
cis-1,3-Dichloro	propene	N.D.	N.D.	1	4.5	0	0		
trans-1,3-Dichlo	propropene	N.D.	N.D.	1	4.5	0.774	0.041		
1,1,2-Trichloroe	thane	N.D.	N.D.	1	5.5	0	0		
Toluene		0.6	2.2	1	3.8	0.997	0.501		
1,2-Dibromoeth	ane	N.D.	N.D.	1	7.7	0	0	Ethylen	e Dibromide
Tetrachloroethy	lene	0.4	2.9	1	6.8	0.95	0.584	Perchlo	roethylene
Chlorobenzene		N.D.	N.D.	1	4.6	0	0		
Ethylbenzene		N.D.	N.D.	1	4.3	0.965	0.183		
p/m-Xylene (se	e note)	N.D.	N.D.	1	4.3	0.902	0.153		
Styrene		9.9	42.2	1	4.3	0.998	0.633	Vinyl be	enzene
o-Xylene		N.D.	N.D.	1	4.3	0.994	0.263		
1,1,2,2-Tetrach	loroethane	N.D.	N.D.	5	34	0	0		
1,3,5-Trimethyll	benzene	N.D.	N.D.	5	25	0.994	0.198	Mesityl	ene
1,2,4-Trimethyll	benzene	N.D.	N.D.	5	25	0.994	0.198		
1,3-Dichlorober	zene (meta)	N.D.	N.D.	5	30	0	0	m- Dicl	nlorobenzene
1,2-Dichlorober	, ,	N.D.	N.D.	5	30	0	0	o – Dicl	nlorobenzene
1,4-Dichlorober	zene (para)	N.D.	N.D.	5	30	0	0	p – Dicl	nlorobenzene
1,2,4-Trichlorob		N.D.	N.D.	5	37	0	0		
HexachloroButa	adiene	N.D.	N.D.	5	53	0	0		
Concentration f	or combined p-	& m- Xylen	es could be	up to twice	the listed	value, due	to co-elutior	conditio	ins.
Instrument: HAP	SITE Smart Plu	s GC/MS	Quality Contr	rol: 3-6 point	cal w/ %RS	D<30, Intern	al Stds, daily	blank, dail	y cal check
N.D. = Not Detec									libration: 3/31/1
Peak Fit=agreemer								0.85 very	likely match
COMMENTS:			,					,	

	_					CREENING			
	Framingham		Address:	133 Lelai					Location:
Date Sampled:	8/6/12		12:10 PM		AR-3	Collector:	-		Near Area
Date Analyzed:	8/6/12		12:16 PM	Lab ID:	002	Analyst:	Fitzgerald	i	RAE #3
Method Analy	tes		ntration	Reporti		Peak Fit	Peak		Synonym
		ppbV	μg/m³	ppbV	μg/m ³		Purity		
Vinyl Chloride		N.D.	N.D.	5	13	0.835	0.052	Chloroe	
Bromomethane		N.D.	N.D.	5	22	0.55	0.013	_	Bromide
Chloroethane		N.D.	N.D.	5	23	0.743	0.032	Ethyl C	
Trichloromonofl	uoromethane	N.D.	N.D.	30	210	0.821	0.037	Freon 1	
1,1-Dichloroeth	ene	N.D.	N.D.	1	4	0	0	Vinylide	ene Chloride
Methylene Chlo		N.D.	N.D.	1	3.5	0.858	0.048	Dichlor	omethane
1,1,2-Trichlorot	rifluoroethane	N.D.	N.D.	1	7.7	0.744	0.051	Freon 1	13
1,1-Dichloroeth	ane	N.D.	N.D.	1	4.1	0	0		
Cis 1,2-Dichlor	oethylene	N.D.	N.D.	1	4	0	0	cis-1,2-	Dichloroethen
Chloroform		N.D.	N.D.	1	4.9	0	0	Trichlor	omethane
1,2-Dichloroeth	ane	N.D.	N.D.	5	20	0.884	0.007	Ethyler	ne Dichloride
1,1,1-Trichloroe	thane	N.D.	N.D.	1	5.5	0	0	Methyl	Chloroform
Benzene		N.D.	N.D.	1	3.2	0.856	0.075		
Carbon Tetrach	loride	N.D.	N.D.	1	6.3	0.993	0.074	Tetrach	loromethane
1,2-Dichloropro	pane	N.D.	N.D.	1	4.6	0	0	Propyle	ne Dichloride
Trichloroethyler	ne	N.D.	N.D.	1	5.4	0.865	0.082	Trichlor	oethene
cis-1,3-Dichloro	propene	N.D.	N.D.	1	4.5	0	0		
trans-1,3-Dichlo	ropropene	N.D.	N.D.	1	4.5	0	0		
1,1,2-Trichloroe	thane	N.D.	N.D.	1	5.5	0	0		
Toluene		0.9	3.3	1	3.8	0.999	0.6		
1,2-Dibromoeth	ane	N.D.	N.D.	1	7.7	0	0	Ethyler	ne Dibromide
Tetrachloroethy	lene	1.9	12.7	1	6.8	0.975	0.879	Perchlo	roethylene
Chlorobenzene		N.D.	N.D.	1	4.6	0	0		-
Ethylbenzene		N.D.	N.D.	1	4.3	0.995	0.226		
p/m-Xylene (se	e note)	N.D.	N.D.	1	4.3	0.994	0.229		
Styrene		1.6	6.6	1	4.3	0.999	0.559	Vinyl b	enzene
o-Xylene		N.D.	N.D.	1	4.3	0.892	0.13		
1,1,2,2-Tetrach	loroethane	N.D.	N.D.	5	34	0	0		
1,3,5-Trimethyl		N.D.	N.D.	5	25	0.855	0.132	Mesityl	ene
1,2,4-Trimethyl		N.D.	N.D.	5	25	0.965	0.184		
1,3-Dichlorober		N.D.	N.D.	5	30	0	0	m- Dic	hlorobenzene
1,2-Dichlorober	. ,	N.D.	N.D.	5	30	0	0	o – Dic	hlorobenzene
1,4-Dichlorober	· /	N.D.	N.D.	5	30	0	0	p – Dic	hlorobenzene
1,2,4-Trichlorob	VI /	N.D.	N.D.	5	37	0	0		
HexachloroButa		N.D.	N.D.	5	53	0	0		
Concentration f								conditio	ns.
nstrument: HAP									daily cal check
N.D. = Not Dete									libration: 3/31/
						mpounds. Fit			

Massucr Fie	ld Assessmen	CREENING DATA RT			3-19174				
City or Town:	Framingham	1	Address:	133 Lela	nd Street				Location:
Date Sampled:	8/6/12	Time:	12:35 PM	Field ID:	AR-4	Collector:	Fitzgerald	i	Near Area
Date Analyzed:	8/6/12	Time:	12:48 PM	Lab ID:	003	Analyst:	Fitzgerald	ı	RAE #4
		Conce	ntration	Reporti	ng Limit	D 150	Peak		2
Method Analy	tes	ppbV	μg/m³	ppbV	μg/m ³	Peak Fit	Purity	,	Synonym
Vinyl Chloride		N.D.	N.D.	5	13	0.703	0.015	Chloroe	thene
Bromomethane		N.D.	N.D.	5	22	0.987	0.02	Methyl	Bromide
Chloroethane		N.D.	N.D.	5	23	0.754	0.06	Ethyl C	hloride
Trichloromonofl	uoromethane	N.D.	N.D.	30	210	0	0	Freon 1	1
1,1-Dichloroeth	ene	N.D.	N.D.	1	4	0.578	0.018	Vinylide	ene Chloride
Methylene Chlo	oride	N.D.	N.D.	1	3.5	0	0	Dichlor	omethane
1,1,2-Trichlorot	rifluoroethane	N.D.	N.D.	1	7.7	0	0	Freon 1	13
1,1-Dichloroeth	ane	N.D.	N.D.	1	4.1	0	0		
Cis 1,2-Dichlor	oethylene	N.D.	N.D.	1	4	0	0	cis-1,2-	Dichloroethene
Chloroform		N.D.	N.D.	1	4.9	0.995	0.031	Trichlor	omethane
1,2-Dichloroeth	ane	N.D.	N.D.	5	20	0	0	Ethyler	e Dichloride
1,1,1-Trichloroe	thane	N.D.	N.D.	1	5.5	0	0	Methyl	Chloroform
Benzene		N.D.	N.D.	1	3.2	0	0		
Carbon Tetrach	loride	N.D.	N.D.	1	6.3	0.954	0.076	Tetrach	loromethane
1,2-Dichloropro	pane	N.D.	N.D.	1	4.6	0	0	Propyle	ne Dichloride
Trichloroethyler	ne .	N.D.	N.D.	1	5.4	0.913	0.249	Trichlor	oethene
cis-1,3-Dichloro	propene	N.D.	N.D.	1	4.5	0	0		
trans-1,3-Dichlo	propropene	N.D.	N.D.	1	4.5	0	0		
1,1,2-Trichloroe	thane	N.D.	N.D.	1	5.5	0	0		
Toluene		0.5	1.9	1	3.8	0.945	0.456		
1,2-Dibromoeth	ane	N.D.	N.D.	1	7.7	0	0	Ethyler	ie Dibromide
Tetrachloroethy	lene	0.4	2.5	1	6.8	0.953	0.586	Perchlo	roethylene
Chlorobenzene		N.D.	N.D.	1	4.6	0	0		
Ethylbenzene		N.D.	N.D.	1	4.3	0.977	0.161		
p/m-Xylene (se	e note)	N.D.	N.D.	1	4.3	0.961	0.214		
Styrene		2.0	8.5	1	4.3	0.999	0.597	Vinyl b	enzene
o-Xylene		N.D.	N.D.	1	4.3	0.971	0.216		
1,1,2,2-Tetrach		N.D.	N.D.	5	34	0.921	0.029		
1,3,5-Trimethyl		N.D.	N.D.	5	25	0.971	0.186	Mesityl	ene
1,2,4-Trimethyl		N.D.	N.D.	5	25	0.997	0.249		
1,3-Dichlorober	, ,	N.D.	N.D.	5	30	0	0		hlorobenzene
1,2-Dichlorober	. ,	N.D.	N.D.	5	30	0	0		hlorobenzene
1,4-Dichlorober		N.D.	N.D.	5	30	0	0	p – Dic	hlorobenzene
1,2,4-Trichlorob		N.D.	N.D.	5	37	0	0		
HexachloroButa		N.D.	N.D.	5	53	0	0		
¹ Concentration f	or combined p-	& m- Xylen	es could be	up to twice	e the listed	value, due	to co-elution	n conditio	ons.
Instrument: HAP	SITE Smart Plu	is GC/MS	Quality Contr	rol: 3-6 point	cal w/ %RS	SD<30, Intern	al Stds, daily	blank, dai	ly cal check
N.D. = Not Dete	cted Italicized	= estimate	d "J" value (d	concentrati	on is less t	than Report	ting Limit).	Last Ca	libration: 3/31/1
Peak Fit=agreemer	nt w/ spectral dat	abase; Peak	Purity=interfe	erence from	coeluting co	mpounds. Fit	>0.5 likely, >	0.85 very	likely match
COMMENTS:									

MassDEP FIE	ld Assessmer	nt and Sup	port Tean	ı (FAST)	AIR S	CREENING	DATA	RTN:	3-19174	
City or Town:	Framingham	1	Address:	133 Lelai	nd Street				Location:	
Date Sampled:	8/6/12	Time:	1:02 PM	Field ID:	B-1	Collector:	Fitzgerald	i	Outside Bldg	
Date Analyzed:	8/6/12	Time:	1:20 PM	Lab ID:	004	Analyst:	Fitzgerald	i	No. 1	
		Concer	ntration	Reportir	ng Limit	Peak Fit	Peak		D	
Method Analy	tes	ppbV	μg/m³	ppbV	μg/m³	Peak Fit	Purity	,	Synonym	
Vinyl Chloride		N.D.	N.D.	5	13	0.671	0.018	Chloroe	thene	
Bromomethane)	N.D.	N.D.	5	22	0.958	0.02	Methyl	Bromide	
Chloroethane		N.D.	N.D.	5	23	0.687	0.026	Ethyl C	hloride	
Trichloromonofl	uoromethane	N.D.	N.D.	30	210	0.95	0.052	Freon 1	1	
1,1-Dichloroeth	ene	N.D.	N.D.	1	4	0	0	Vinylide	ene Chloride	
Methylene Chlo	oride	N.D.	N.D.	1	3.5	0	0	Dichlor	omethane	
1,1,2-Trichlorot	rifluoroethane	N.D.	N.D.	1	7.7	0.841	0.057	Freon 1	13	
1,1-Dichloroeth	ane	N.D.	N.D.	1	4.1	0	0			
Cis 1,2-Dichlor	oethylene	N.D.	N.D.	1	4	0	0	cis-1,2-	Dichloroethen	
Chloroform		N.D.	N.D.	1	4.9	0	0	Trichlor	omethane	
1,2-Dichloroeth	ane	N.D.	N.D.	5	20	0	0	Ethyler	e Dichloride	
1,1,1-Trichloroe	thane	N.D.	N.D.	1	5.5	0	0	Methyl	Chloroform	
Benzene		0.3	1.1	1	3.2	0.951	0.261			
Carbon Tetrach	loride	N.D.	N.D.	1	6.3	0.947	0.086	Tetrach	loromethane	
1,2-Dichloropro	pane	N.D.	N.D.	1	4.6	0	0	Propyle	ne Dichloride	
Trichloroethyler	ne	N.D.	N.D.	1	5.4	0	0	Trichlor	oethene	
cis-1,3-Dichloro	propene	N.D.	N.D.	1	4.5	0	0			
rans-1,3-Dichlo	propropene	N.D.	N.D.	1	4.5	0	0			
1,1,2-Trichloroe	thane	N.D.	N.D.	1	5.5	0	0			
Toluene		0.5	1.9	1	3.8	0.986	0.524			
1,2-Dibromoeth	ane	N.D.	N.D.	1	7.7	0	0	Ethyler	e Dibromide	
Tetrachloroethy	lene .	N.D.	N.D.	1	6.8	0.737	0.22	Perchlo	roethylene	
Chlorobenzene		N.D.	N.D.	1	4.6	0	0			
Ethylbenzene		N.D.	N.D.	1	4.3	0.993	0.193			
o/m-Xylene (se	e note)	N.D.	N.D.	1	4.3	0.998	0.317			
Styrene		0.5	2.2	1	4.3	1	0.454	Vinyl b	enzene	
o-Xylene		N.D.	N.D.	1	4.3	0.986	0.206			
1,1,2,2-Tetrach		N.D.	N.D.	5	34	0	0			
1,3,5-Trimethyl		N.D.	N.D.	5	25	0.919	0.155	Mesityl	ene	
1,2,4-Trimethyl		N.D.	N.D.	5	25	0.962	0.181			
1,3-Dichlorober	, ,	N.D.	N.D.	5	30	0	0		nlorobenzene	
1,2-Dichlorober	, ,	N.D.	N.D.	5	30	0	0		nlorobenzene	
1,4-Dichlorober	4 7	N.D.	N.D.	5	30	0	0	p – Dic	hlorobenzene	
1,2,4-Trichlorob		N.D.	N.D.	5	37	0	0			
HexachloroBut	adiene	N.D.	N.D.	5	53	0	0			
Concentration f	or combined p-	& m- Xylen	es could be	up to twice	the listed	value, due t	to co-elution	conditio	ns.	
nstrument: HAP	SITE Smart Plu	ıs GC/MS	Quality Cor	ntrol: 3-6 po	int cal w/ 9	6RSD<30, I	Int Stds, dail	y blank,	daily cal check	
N.D. = Not Dete	cted Italicized	= estimated	_	-					libration: 3/31/	
Peak Fit=agreeme	nt w/ spectral dat	tabase; Peak	Purity=interfe	rence from o	coeluting cor	mpounds. Fit	>0.5 likely, >0	.85 very	ikely match	
Peak Fit=agreement w/ spectral database; Peak Purity=interference from coeluting compounds. Fit >0.5 likely, >0.85 very likely match										

MassDEP Fie	ld Assessmen	t and Sup	port Tean	n (FAST)	AIR S	CREENING	DATA	RTN:	3-19174
City or Town:	Framingham	l	Address:	133 Lelai	nd Street				Location:
Date Sampled:	8/6/12	Time:	1:45 PM	Field ID:	AR-3(2)	Collector:	Immerma	n	Near AR-3
Date Analyzed:	8/6/12	Time:	1:58 PM	Lab ID:	005	Analyst:	Fitzgerald	i	and tent
		Concer	ntration	Reporti	ng Limit	David Cit	Peak		C
Method Analy	tes	ppbV	μg/m³	ppbV	μg/m³	Peak Fit	Purity	'	Synonym
Vinyl Chloride		N.D.	N.D.	5	13	0.962	0.015	Chloroe	thene
Bromomethane		N.D.	N.D.	5	22	0.774	0.014	Methyl	Bromide
Chloroethane		N.D.	N.D.	5	23	0.85	0.028	Ethyl C	hloride
Trichloromonofl	uoromethane	N.D.	N.D.	30	210	0	0	Freon 1	1
1,1-Dichloroeth	ene	N.D.	N.D.	1	4	0	0	Vinylide	ene Chloride
Methylene Chlo	ride	N.D.	N.D.	1	3.5	0	0	Dichlor	omethane
1,1,2-Trichloroti	rifluoroethane	N.D.	N.D.	1	7.7	0	0	Freon 1	13
1,1-Dichloroeth	ane	N.D.	N.D.	1	4.1	0	0		
Cis 1,2-Dichlor	oethylene	N.D.	N.D.	1	4	0	0	cis-1,2-	Dichloroethene
Chloroform		N.D.	N.D.	1	4.9	0.882	0.003	Trichlor	omethane
1,2-Dichloroeth	ane	N.D.	N.D.	5	20	0.786	0.005	Ethyler	ne Dichloride
1,1,1-Trichloroe	thane	N.D.	N.D.	1	5.5	0	0	Methyl	Chloroform
Benzene		N.D.	N.D.	1	3.2	0.894	0.115		
Carbon Tetrach	loride	N.D.	N.D.	1	6.3	0.926	0.118	Tetrach	loromethane
1,2-Dichloropro	pane	N.D.	N.D.	1	4.6	0	0	Propyle	ne Dichloride
Trichloroethyler	ne	N.D.	N.D.	1	5.4	0	0	Trichlor	oethene
cis-1,3-Dichloro	propene	N.D.	N.D.	1	4.5	0	0		
trans-1,3-Dichlo	ropropene	N.D.	N.D.	1	4.5	0	0		
1,1,2-Trichloroe	thane	N.D.	N.D.	1	5.5	0	0		
Toluene		0.5	2.1	1	3.8	0.999	0.52		
1,2-Dibromoeth	ane	N.D.	N.D.	1	7.7	0	0	Ethyler	ne Dibromide
Tetrachloroethy	lene	N.D.	N.D.	1	6.8	0	0	Perchlo	roethylene
Chlorobenzene		N.D.	N.D.	1	4.6	0	0		
Ethylbenzene		N.D.	N.D.	1	4.3	0.977	0.171		
p/m-Xylene (se	e note)	N.D.	N.D.	1	4.3	0.979	0.233		
Styrene		0.8	3.6	1	4.3	1	0.572	Vinyl b	enzene
o-Xylene		N.D.	N.D.	1	4.3	0.867	0.107		
1,1,2,2-Tetrach	loroethane	N.D.	N.D.	5	34	0	0		
1,3,5-Trimethyll	benzene	N.D.	N.D.	5	25	0.996	0.204	Mesityl	ene
1,2,4-Trimethyll	benzene	N.D.	N.D.	5	25	0.996	0.204		
1,3-Dichloroben	zene (meta)	N.D.	N.D.	5	30	0	0	m- Dic	hlorobenzene
1,2-Dichlorober	zene (ortho)	N.D.	N.D.	5	30	0	0	o – Dic	hlorobenzene
1,4-Dichlorober	zene (para)	N.D.	N.D.	5	30	0	0	p – Dic	hlorobenzene
1,2,4-Trichlorob	enzene	N.D.	N.D.	5	37	0	0		
HexachloroButa	adiene	N.D.	N.D.	5	53	0	0		
Concentration f	or combined p-	& m- Xylen	es could be	up to twice	e the listed	value, due	to co-elutio	n conditi	ons.
Instrument: HAP	SITE Smart Plu	s GC/MS	Quality Cont	rol: 3-6 point	cal w/ %RS	SD<30, Intern	al Stds, daily	blank, dai	ily cal check
N.D. = Not Detec			_						libration: 3/31/1
Peak Fit=agreemer								0.85 very	likely match
COMMENTS:	-	-	-						

MassDEP Fiel	d Assessmen	t and Sup	port Tean	n (FAST)	AIR S	CREENING	DATA	RTN:	3-19174
City or Town:	Framingham		Address:	133 Lelai	nd Street				Location:
Date Sampled:	8/6/12	Time:	2:50 PM	Field ID:	tank	Collector:	Fitzgeral	d	50 ft SE of
Date Analyzed:	8/6/12	Time:	3:04 PM	Lab ID:	007	Analyst:	Fitzgeral	d	tank farm
		Concer	ntration	Reporti	ng Limit	Peak Fit	Peak		D
Method Analyt	es	ppbV	μg/m ³	ppbV	μg/m ³	Peak Fit	Purity	'	Synonym
Vinyl Chloride		N.D.	N.D.	5	13	0	0	Chloroe	thene
Bromomethane		N.D.	N.D.	5	22	0.999	0.018	Methyl	Bromide
Chloroethane		3.9	10.2	5	23	0.98	0.127	Ethyl C	hloride
Trichloromonoflu	uoromethane	N.D.	N.D.	30	210	0	0	Freon 1	1
1,1-Dichloroethe	ene	N.D.	N.D.	1	4	0	0	Vinylide	ene Chloride
Methylene Chlo	ride	N.D.	N.D.	1	3.5	0.541	0.027	Dichlor	omethane
1,1,2-Trichlorotr	ifluoroethane	N.D.	N.D.	1	7.7	0	0	Freon 1	13
1,1-Dichloroetha	ane	N.D.	N.D.	1	4.1	0	0		
Cis 1,2-Dichloro	ethylene	N.D.	N.D.	1	4	0.458	0.004	cis-1,2-	Dichloroethene
Chloroform		N.D.	N.D.	1	4.9	0	0	Trichlor	omethane
1,2-Dichloroetha	ane	N.D.	N.D.	5	20	0.703	0.004	Ethyler	e Dichloride
1,1,1-Trichloroe	thane	0.2	1.1	1	5.5	0.999	0.197	Methyl	Chloroform
Benzene		N.D.	N.D.	1	3.2	0.995	0.17		
Carbon Tetrachl	oride	N.D.	N.D.	1	6.3	0.724	0.036	Tetrach	loromethane
1,2-Dichloroprop	pane	N.D.	N.D.	1	4.6	0	0	Propyle	ne Dichloride
Frichloroethylen		0.6	3.0	1	5.4	0.989	0.547		oethene
cis-1,3-Dichloro	propene	N.D.	N.D.	1	4.5	0	0		
trans-1,3-Dichlo		N.D.	N.D.	1	4.5	0	0		
1,1,2-Trichloroe		N.D.	N.D.	1	5.5	0	0		
Toluene		0.3	1.2	1	3.8	0.998	0.466		
1,2-Dibromoeth	ane	N.D.	N.D.	1	7.7	0	0	Ethyler	e Dibromide
Tetrachloroethy	lene	0.6	4.3	1	6.8	0.974	0.792		roethylene
Chlorobenzene		N.D.	N.D.	1	4.6	0	0		
Ethylbenzene		N.D.	N.D.	1	4.3	0.939	0.172		
p/m-Xylene (see	note)	N.D.	N.D.	1	4.3	0.998	0.315		
Styrene	,	1.1	4.7	1	4.3	0.999	0.55	Vinyl b	enzene
o-Xylene		N.D.	N.D.	1	4.3	0.892	0.119		
1,1,2,2-Tetrachl	oroethane	N.D.	N.D.	5	34	0.642	0.018		
1,3,5-Trimethylk		N.D.	N.D.	5	25	0.967	0.207	Mesityl	ene
1,2,4-Trimethylk		N.D.	N.D.	5	25	0.998	0.231		
1,3-Dichloroben		N.D.	N.D.	5	30	0	0	m- Dic	hlorobenzene
1,2-Dichloroben	, ,	N.D.	N.D.	5	30	0	0		hlorobenzene
1,4-Dichloroben	zene (para)	N.D.	N.D.	5	30	0	0	p – Dic	hlorobenzene
1,2,4-Trichlorob		N.D.	N.D.	5	37	0	0	-	
HexachloroButa		N.D.	N.D.	5	53	0	0		
Concentration for						value, due	to co-elutio	n conditi	ons.
nstrument: HAP							al Stds, daily		
V.D. = Not Detec									libration: 3/31/1
eak Fit=agreemen								1	
agreemen	opoonal date	ando, i ouk	. army - moorn	. Jiioo iioiii	- John Ling Ot	pourido. I I	. o.o anoly, a	2.00 1019	ory maton

	ld Assessmen		<u> </u>	•		CREENING	DAIA	RTN:	3-19174
City or Town:	Framingham	1	Address:	133 Lelai	nd Street				Location:
Date Sampled:	8/6/12	Time:	3:30 PM	Field ID:	SE	Collector:	Fitzgerald	i	SE corner of
Date Analyzed:	8/6/12	Time:	3:41 PM	Lab ID:	800	Analyst:	Fitzgerald	i	site
Method Analy	tos	Concer	ntration	Reporti	_	Peak Fit	Peak		Synonym
Wethou Analy	ies	ppbV	μg/m³	ppbV	μg/m³	reakiit	Purity	· ·	Synonym
Vinyl Chloride		N.D.	N.D.	5	13	0	0	Chloroe	thene
Bromomethane		N.D.	N.D.	5	22	0.837	0.016	Methyl	Bromide
Chloroethane		N.D.	N.D.	5	23	0.975	0.073	Ethyl C	
Trichloromonofl	uoromethane	N.D.	N.D.	30	210	0.943	0.04	Freon 1	1
1,1-Dichloroeth	ene	N.D.	N.D.	1	4	0	0	Vinylide	ene Chloride
Methylene Chlo	oride	N.D.	N.D.	1	3.5	0	0	Dichlor	omethane
1,1,2-Trichlorot	rifluoroethane	N.D.	N.D.	1	7.7	0.82	0.035	Freon 1	13
1,1-Dichloroeth	ane	N.D.	N.D.	1	4.1	0	0		
Cis 1,2-Dichlor	oethylene	N.D.	N.D.	1	4	0.942	0.031	cis-1,2-	Dichloroethen
Chloroform		N.D.	N.D.	1	4.9	0	0	Trichlor	omethane
1,2-Dichloroeth	ane	N.D.	N.D.	5	20	0.598	0.003	Ethylen	e Dichloride
1,1,1-Trichloroe	thane	N.D.	N.D.	1	5.5	0	0	Methyl	Chloroform
Benzene		N.D.	N.D.	1	3.2	0	0		
Carbon Tetrach	loride	N.D.	N.D.	1	6.3	0.787	0.094	Tetrach	loromethane
1,2-Dichloropro	pane	N.D.	N.D.	1	4.6	0	0	Propyle	ne Dichloride
Trichloroethyler	ne	N.D.	N.D.	1	5.4	0.695	0.063	Trichlor	oethene
cis-1,3-Dichloro	propene	N.D.	N.D.	1	4.5	0	0		
trans-1,3-Dichlo	propropene	N.D.	N.D.	1	4.5	0	0		
1,1,2-Trichloroe	thane	N.D.	N.D.	1	5.5	0	0		
Toluene		0.3	1.0	1	3.8	0.997	0.396		
1,2-Dibromoeth	ane	N.D.	N.D.	1	7.7	0	0	Ethylen	ie Dibromide
Tetrachloroethy	lene	N.D.	N.D.	1	6.8	0	0	Perchlo	roethylene
Chlorobenzene		N.D.	N.D.	1	4.6	0	0		
Ethylbenzene		N.D.	N.D.	1	4.3	0.936	0.182		
p/m-Xylene (se	e note)	N.D.	N.D.	1	4.3	0.967	0.206		
Styrene		1.0	4.4	1	4.3	1	0.603	Vinyl b	enzene
o-Xylene		N.D.	N.D.	1	4.3	0.973	0.207		
1,1,2,2-Tetrach	loroethane	N.D.	N.D.	5	34	0	0		
1,3,5-Trimethyl	benzene	N.D.	N.D.	5	25	0.962	0.152	Mesityl	ene
1,2,4-Trimethyl	benzene	N.D.	N.D.	5	25	0.999	0.194		
1,3-Dichlorober	zene (meta)	N.D.	N.D.	5	30	0.638	0.025	m- Dic	hlorobenzene
1,2-Dichlorober	zene (ortho)	N.D.	N.D.	5	30	0.669	0.026	o – Dic	hlorobenzene
1,4-Dichlorober	zene (para)	N.D.	N.D.	5	30	0.63	0.025	p – Dic	hlorobenzene
1,2,4-Trichlorob	enzene	N.D.	N.D.	5	37	0	0		
HexachloroButa	adiene	N.D.	N.D.	5	53	0	0		
Concentration f	or combined p-	& m- Xylen	es could be	up to twice	e the listed	value, due	to co-elution	n conditi	ons.
Instrument: HAF	SITE Smart Plu	ıs GC/MS	Quality Cont	rol: 3-6 point	cal w/ %R9	SD<30, Intern	al Stds, daily	blank, dai	lv cal check
N.D. = Not Dete									libration: 3/31/1
Peak Fit=agreemer									
COMMENTS:	F		,					,	
CIMINIEN 13:									

MassDEP Fiel	d Assessmen	t and Sup	port Tean	n (FAST)	AIR S	CREENING	DATA	RTN:	3-19174
City or Town:	Framingham		Address:	133 Lela	nd Street				Location:
Date Sampled:	8/6/12	Time:	4:10 PM	Field ID:	Rack	Collector:	Fitzgeral	d	Loading Rack
Date Analyzed:	8/6/12	Time:	4:21 AM	Lab ID:	009		Fitzgeral		Area
0.0 - 4 0		Concer	ntration	Reporti	ng Limit	Deels Ea	Peak		C
Method Analyt	tes	ppbV	μg/m³	ppbV	μg/m³	Peak Fit	Purity		Synonym
Vinyl Chloride		N.D.	N.D.	5	13	0	0	Chloroe	ethene
Bromomethane		N.D.	N.D.	5	22	0	0	Methyl	Bromide
Chloroethane		N.D.	N.D.	5	23	0.76	0.053	Ethyl C	hloride
Trichloromonoflu	uoromethane	N.D.	N.D.	30	210	0.774	0.011	Freon 1	11
1,1-Dichloroethe	ene	N.D.	N.D.	1	4	0	0	Vinylide	ene Chloride
Methylene Chlo	ride	N.D.	N.D.	1	3.5	0	0	Dichlor	omethane
1,1,2-Trichlorotr	ifluoroethane	N.D.	N.D.	1	7.7	0.684	0.029	Freon 1	113
1,1-Dichloroetha	ane	N.D.	N.D.	1	4.1	0	0		
Cis 1,2-Dichloro	ethylene	N.D.	N.D.	1	4	0	0	cis-1,2-	-Dichloroethene
Chloroform		N.D.	N.D.	1	4.9	0	0	Trichlor	omethane
1,2-Dichloroetha	ane	N.D.	N.D.	5	20	0	0	Ethyler	ne Dichloride
1,1,1-Trichloroe	thane	N.D.	N.D.	1	5.5	0.739	0.013	Methyl	Chloroform
Benzene		N.D.	N.D.	1	3.2	0	0		
Carbon Tetrachl	loride	N.D.	N.D.	1	6.3	0.967	0.072	Tetrach	loromethane
1,2-Dichloroprop	pane	N.D.	N.D.	1	4.6	0	0	Propyle	ene Dichloride
Trichloroethylen	ie	N.D.	N.D.	1	5.4	0	0	Trichlor	oethene
cis-1,3-Dichloro	propene	N.D.	N.D.	1	4.5	0	0		
trans-1,3-Dichlo	ropropene	N.D.	N.D.	1	4.5	0	0		
1,1,2-Trichloroe	thane	N.D.	N.D.	1	5.5	0	0		
Toluene		0.7	2.6	1	3.8	0.997	0.607		
1,2-Dibromoeth	ane	N.D.	N.D.	1	7.7	0	0	Ethyler	ne Dibromide
Tetrachloroethy	lene	N.D.	N.D.	1	6.8	0.882	0.398	Perchlo	roethylene
Chlorobenzene		N.D.	N.D.	1	4.6	0	0		
Ethylbenzene		N.D.	N.D.	1	4.3	0.971	0.241		
p/m-Xylene (see	e note)	N.D.	N.D.	1	4.3	0.854	0.178		
Styrene		0.8	3.4	1	4.3	0.999	0.553	Vinyl b	enzene
o-Xylene		N.D.	N.D.	1	4.3	0.972	0.262		
1,1,2,2-Tetrachl	oroethane	N.D.	N.D.	5	34	0.949	0.022		
1,3,5-Trimethylb	penzene	N.D.	N.D.	5	25	0.984	0.253	Mesityl	ene
1,2,4-Trimethylk	penzene	N.D.	N.D.	5	25	0.988	0.254		
1,3-Dichloroben	zene (meta)	N.D.	N.D.	5	30	0	0	m- Dic	hlorobenzene
1,2-Dichloroben	zene (ortho)	N.D.	N.D.	5	30	0	0	o – Dic	hlorobenzene
1,4-Dichloroben	zene (para)	N.D.	N.D.	5	30	0	0	p – Dic	hlorobenzene
1,2,4-Trichlorob	enzene	N.D.	N.D.	5	37	0	0		
HexachloroButa	ndiene	N.D.	N.D.	5	53	0	0		
¹ Concentration fo	or combined p-	& m- Xylen	es could be	up to twic	e the listed	value, due	to co-elutio	n conditi	ons.
Instrument: HAP:	SITE Smart Plu	s GC/MS	Quality Cont	rol: 3-6 point	t cal w/ %R	SD<30, Intern	al Stds, daily	blank, da	ily cal check
N.D. = Not Detec	ted Italicized	= estimated							libration: 3/31/11

Peak Fit=agreement w/ spectral database; Peak Purity=interference from coeluting compounds. Fit >0.5 likely, >0.85 very likely match

COMMENTS: